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ABSTRACT

Recent node-level GPU accelerated graph processing frameworks
have separately chosen synchronous and asynchronous architec-
tures. Which is better under which circumstances, and why? We
focus on Gunrock (a synchronous framework) vs. Groute (an asyn-
chronous framework) with 3 primitives on 3 different datasets. We
identify load balance, kernel count, and communication latency
and bandwidth as quantities of particular interest.
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1 INTRODUCTION

This paper focuses on multi-GPU implementations of graph prim-
itives. Synchronous approaches to this problem [3, 6] follow the
BSP model [9] and require a global synchronization between algo-
rithmic iterations. Asynchronous approaches [1, 10] allow direct
GPU-to-GPU communication without a global barrier. In this posi-
tioning paper, we focus on the Gunrock (synchronous) and Groute
(asynchronous) frameworks for GPU graph computation to gain
insight into which framework works the best in which situations.
We show experiments using large real-world graphs, on different
GPU generations, to illuminate performance bottlenecks and how
they may change over time.

2 ANALYSIS OF SYNCHRONOUS
FRAMEWORKS

The BSP model that underpins existing synchronous graph frame-
works is a natural fit for the GPU execution model. More specifi-
cally, results output from a streaming multiprocessor (SM) are only
guaranteed to be viewable on another SM after a kernel boundary,
which is a hard synchronization point on a single GPU. In general,
BSP approaches on GPUs, and synchronous graph frameworks, are
best suited for large workloads on every kernel launch. Having a
large workload per kernel motivates an implementation focus on
load balancing, a critical optimization when dealing with irregular
workloads like sparse graphs.
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However, this approach also has drawbacks. Load balancing
operations are not free and may not justify the cost when working
on more regular datasets. An inter-GPU synchronization point in-
hibits more fine-grained (and possibly useful) data communication
and may introduce waiting time when workloads are not perfectly
balanced.

Using the BSP model and Gunrock as an example, we summa-
rize the cost of computation, communication, and synchronization
on different graph primitives in Table 1 of our previous work [6].
For Breadth-First Search (BFS), Connected Components (CC), and
PageRank (PR), the communication volume is at most on the or-
der of the number of vertices in a GPU’s local sub-graph, and the
computation is at least on the order of the number of edges of such
sub-graph. As a result, for graphs with large average vertex degrees,
a synchronous framework should achieve good scaling across multi-
ple GPUs. However, we will observe poor scalability for workloads
in which the per-iteration overhead (e.g., kernel launch overheads
and communication latencies) is significant compared to other parts
of the framework, which happens when the per-iteration workload
is too small.

3 ANALYSIS OF ASYNCHRONOUS
FRAMEWORKS

Asynchronous frameworks must run atop a synchronous GPU sub-
strate. One common approach is to launch small batches of work-
loads using many individual kernels, mirroring a continuous data
flow. Small kernels may not be able to utilize the full computing
power of GPUs, and kernel launches have a few microseconds
of overhead. With small workloads per kernel, load balancing is
proportionally more expensive and may not be helpful.

The principal advantage of asynchrony is its lack of a global bar-
rier, which allows faster communication: the graph framework does
not need to wait for all the data from its peers before performing
further computation, significantly reducing synchronization costs.
Also because data flows more freely and in smaller packages, smart
asynchronous algorithms can propagate data more quickly than
synchronous frameworks, and thus allow solutions to converge
sooner, yielding better performance on some algorithms such as
PR and CC.

4 EXPERIMENTS

To understand how the frameworks perform on real data, we test
them using three huge graphs (Table 1). These graphs have a similar
number of edges, but have a wide variety of graph properties: soc-
twitter-20101s a large scale-free social network with a short diameter
and a irregular degree distribution; osm-eur is the road network
of Europe, with a large graph diameter, and a very regular degree
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Figure 1: Performance of Gunrock (left) and Groute (right). BFS using soc-twitter-2010 on top, CC using snlpkkt240 at bottom.
Negative timings indicate successful overlap between compute and communication.

Graph V] |E| D* Note
soc-twitter-2010  21.3M  530M 15 [2], undirected
nlpkkt240 28M  746M  ~ 200 [7], undirected
osm-eur 174M  348M ~ 22k  [5], directed

Table 1: Graphs used for evaluation. * We use the avg. depth
of multiple BFS search from randomly chosen source ver-
tices to approximate graph diameter.

distribution (more than 90 percent of vertices have out-degree 2
or 3); nlpktt240 is a graph from a optimization problem, with a
medium diameter and a regular degree distribution.

We also selected three primitives, BFS, PR, and CC. BFS is a
strictly level-synchronous primitive that requires processing at
one depth to complete before starting the next; Soman’s CC algo-
rithm [8] does not have any ordering requirement on the hooking
or the pointer jumping steps, which makes it very asynchronous-
friendly; PR has high tolerance for varying the order of operations,
but for performance, PR does need to accumulate some ranking
changes on a vertex before propagating to its neighbors. We use
the latest version of Groute [1] and Gunrock [4], and GPUs across
4 generations. We summarize performance in Fig. 1.

For BFS on soc-twitter-2010, a large irregular graph, Gunrock’s
computation displays clear advantages over Groute’s, mostly be-
cause of Gunrock’s load balancing strategies. Gunrock’s compu-
tation also scales nicely across multiple GPUs and different GPU
generations. Gunrock’s communication for BFS is bounded by bor-
der size, and when the time for computation is at least as much as
for communication, the framework can maintain good scalability.
Groute’s asynchronous communication takes up considerably more

time for the large irregular graph, which harms its scalability. This
comparison generally stays true for other BSP-like primitives on
large irregular graphs.

On the other end of the spectrum, for an asynchronous-friendly
primitive, CC, on a more regular graph, nlpkkt240, Groute’s asyn-
chronous communication shows its strength in keeping communi-
cation volume at a very low level, yielding impressive performance
and scalability. Although Gunrock’s computation still manages to
scale, Gunrock suffers from communication volume increases re-
sulting from its all-to-all label updates in between iterations. After
reaching 3-4 GPUs, the additional cost of communication time out-
weighs the savings in computation time. Gunrock’s load balancing
methods increase per-iteration overheads; synchronization time
becomes a significant component of runtime when the per-iteration
workload is small; together these considerations make Gunrock’s
performance on regular, large-diameter graphs inferior to Groute’s.

5 FUTURE HARDWARE

Technology roadmaps indicate that computing power will con-
tinue to grow faster than inter-processor bandwidth, and that inter-
processor communication latency may not see any significant re-
duction in the near future. This may require future frameworks
of both kinds to pay more attention to reducing communication
cost, especially in not allowing the latency to be a bottleneck (this
is a particular concern when routing a large number of small data
packets). The different successes of synchronous and asynchro-
nous workloads in this set of experiments motivates exploring a
hybrid between both models in an effort to build a framework that
can run workloads with varying regularity and size on single- or
multiple-GPU configurations.
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